
Free-Radical Polymerizations Associated
with the Trommsdorff Effect Under Semibatch Reactor
Conditions. IV. On-Line Inferential-State Estimation

G. B. BHARGAVA RAM, SANTOSH K. GUPTA, D. N. SARAF

Department of Chemical Engineering, Indian Institute of Technology, Kanpur - 208016, India

Received 30 August 1996; accepted 19 November 1996

ABSTRACT: A moving-horizon inferential-state estimation technique is described which
uses simulated ‘‘experimental’’ data on temperature and viscosity to study bulk poly-
merization of free-radical systems. The short-term predictive capability of this tech-
nique is found to be quite good. A considerable amount of ringing (oscillations between
the lower and upper bounds) is observed in the values of the estimated parameters
which can be reduced significantly by narrowing down the range of parameter values
or by including longer horizons in parameter estimation. Short-range prediction of
viscosity was also found to be good. The model-calculated values of monomer conversion
and molecular weights were found to be quite satisfactory in the entire range of opera-
tion. The long-term predictions of the model using the estimated parameters may or
may not be accurate depending on the length of historical data used in the prediction.
However, periodic use of state-variable estimation based on all the data up to that
time, followed by the determination of the optimal temperature history in the future,
could be a feasible strategy for experimental on-line optimizing control of bulk free-
radical polymerizations which exhibit significant amounts of the Trommsdorff effect.
q 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 1861–1877, 1997

INTRODUCTION purposes. A sample polymerization system exhib-
iting these phenomena is that of polymethyl
methacrylate (PMMA), an important commodityIn free-radical polymerizations, the termination,
plastic.propagation, and initiation reactions (see Table

A vast amount of research has been reportedI) become diffusion-controlled as the conversion
in the open literature in the last two decades onof the monomer increases and the viscosity of the
the development of theoretical models for MMAreaction mass increases. The manifestations of
polymerization. Chiu et al.3 developed a modelthese diffusion-controlled reactions (sharp and
having a molecular basis and used the Fujita–large increases in monomer conversion, xm , with
Doolittle free-volume theory to account for the dif-time after a certain period, increase in the weight-
fusional limitations of the termination and propa-average chain length, mw ; see Nomenclature for
gation rate constants, kt and kp . In this model, asymbols and definitions) are commonly referred
set of algebraic equations were written for theto as the gel (or Trommsdorff) ,1,2 glass, and cage
gel and glass effects, using the initial number-effects, respectively. A good model is required to
average chain length, mn ,0 , as a parameter. Later,account for these effects mathematically, so that
Achilias and Kiparissides4,5 developed a model us-it can be used for design, optimization, and control
ing the free-volume theory of Vrentas and Duda6

and accounted for the diffusional effects on kt and
kp , as well as the initiator efficiency, f . This modelCorrespondence to: D. N. Saraf.

q 1997 John Wiley & Sons, Inc. CCC 0021-8995/97/101861-17 used the initial concentration of the initiator, [I ]0 ,
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1862 BHARGAVA RAM, GUPTA, AND SARAF

as a parameter. Normally, industrial reactors are Table I Kinetic Scheme for Polymerization of
operated under nonisothermal or semibatch con- MMA (Bulk and Solution Polymerizations)
ditions with addition and removal of components
like initiator, solvent, and monomer. The models

1. Initiation I r

kd

2Rof Chiu et al. and Achilias and Kiparissides can-
not be applied to these situations since the value 2. Propagation R / M r

ki

P1
of mn ,0 or [I ]0 is not precisely defined for such

3. Termination Pn / M r

kp

Pn/1cases. Ray et al.7 developed a model which did not
have such limitations. They assumed the initiator By combination Pn / Pm r

ktc

Dn/m
efficiency to be constant and obtained expressions

By disproportionation Pn / Pm r

ktd

Dn / Dmfor two parameters of the model, ut (T ) and up (T ) ,
by curve-fitting experimental data8,9 taken in 4. Chain transfer to monomer Pn / M r

kf

P1 / Dn
small ampules under isothermal conditions. The 5. Chain transfer to monomer
predictions made by their model for idealized, via solvent Pn / S r

ks

S• / Dn

nonisothermal conditions (step changes in tem-
S• / M r

ks

S• / Dnperature) as well as for idealized semibatch op-
orerating conditions (intermediate addition of a so-

lution of initiator in monomer) were found to be Pn / M r

ks

Dn / P1

in good agreement with experimental observa-
tions.10,11 This confirmed the adequacy of the
model for the simulation of polymerizations under

resorted to. Seth and Gupta12 and Chakravarthyindustrially relevant conditions of operation.
et al.16 suggested the use of experimental valuesMore recently, Seth and Gupta12 modified the
of the viscosity, h(t ) , of the reaction mass [alongmodel of Ray et al.7 and also considered the varia-
with the measured values of the temperature,tion of the initiator efficiency, f , with time. Their
T (t ) ] for such purposes. Recently, Embirucu etmodel used three parameters, ut (T ) , up(T ) , and
al.17 surveyed the open literature on advanced

uf (T ) , representing the gel, glass, and cage ef-
control strategies for polymerization reactors andfects, respectively. They again curve-fitted the ex-
found that very few studies have been reportedperimental data8,9 on MMA polymerization under
on property estimation techniques for the controlisothermal conditions in small ampules (both for
of bulk polymerizations. There is, thus, a definitebulk polymerization with an AIBN initiator8 as
need to explore whether model-based inferential-well as for solution polymerization in benzene
state estimation using T (t ) and h(t ) is, indeed,with benzoyl peroxide9) . Predictions of their
feasible. If so, it could be used experimentally (in‘‘tuned’’ model were found to be in better agree-
the future) for on-line optimizing control of bulkment with experimental data10,11 taken under ide-
polymerization reactors. This study presentsalized nonisothermal and semibatch conditions
some theoretical work along these lines for thethan was the model of Ray et al. The complete set
sample system, PMMA.of equations for this model12 and the values of

several parameters and physical properties re-
quired are given in Appendices A and B.

With an appropriate model available for free- FORMULATION
radical polymerizations, one can now think of
studying the on-line optimizing control of these

Modelprocesses. An important step in such studies is
the measurement of the state of the system at The kinetic scheme for MMA polymerization is
different times, t . Densitometers and gel perme- shown in Table I. A set of ordinary differential
ation chromatography were used in some experi- equations (ODEs) representing the mass bal-
mental control studies13–15 of solution polymeriza- ances and moment equations for a semibatch reac-
tions for estimating monomer conversions, xm (t ) , tor can easily be written. These are of the form
and the number-average chain lengths, mn (t ) [or
the weight-average chain lengths, mw (t ) ] . How-

dx /dt Å F (x ) ; x (t Å 0) Å x0 (1)ever, these experimental techniques cannot be
used conveniently for bulk polymerizations, and
inferential-state estimation techniques have to be where x (t ) is the state variable vector defined by
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FREE-RADICAL POLYMERIZATIONS. IV 1863

An equation relating the viscosity, h, of the re-x Å [I , M , R , S , l0 , l1 , l2 ,
action mass and the temperature, T , to the state

m0 , m1 , m2 , zm , zm1] (2) of the system (monomer conversion, xm , and
weight-average molecular weight, Mw ) is required

The kth (k Å 0, 1, 2) moment of the radical and so that model-based inferential-state estimation
dead macromolecular species, Pn and Dn , respec- can be done. Moritz19 suggested the use of the
tively, are represented by lk and mk (see Nomen- Lyons–Tobolsky20 equation. This equation is a
clature). The exact equations are shown in Ap- one-term adaptation of the more general series
pendix A. Equations (A.1) – (A.12) of this appen- expression relating the specific viscosity, (h /hsol )
dix account for intermediate additions and 0 1, to the product of the intrinsic viscosity, [h] ,
removals of components like initiator, solvent, and the polymer concentration, Cpolym. We modi-
and monomer through the terms Rli , Rls , Rlm, Rvs , fied the Lyons–Tobolsky equation slightly to in-
and Rvm . The conversion of monomer is defined corporate a higher-order (quadratic) term as
as shown in Appendix A [eq. (A.28)] . This was done

to obtain better predictions for some preliminary
xm Å 1 0 (M /zm1) (3) experimental data on nonreacting PMMA–MMA

solutions at 50 and 707C, taken on a Haaket Ro-
tovisco RV20 viscometer in our laboratory.21 Suchwhere zm1 is the net monomer added to the reactor

since the beginning of the operation. an empirical modification also helped in sup-
pressing the temperature variation of the param-The variation of the rate constants, kt (åktd for

PMMA, since ktc à 0), kp , as well as the initiator eter b in the adapted Lyons–Tobolsky equation.
The parameter kH in this equation, which is aefficiency, f , are described by the algebraic eqs.

(A.13) – (A.27) in Appendix A.12 It is observed function of temperature, was tuned using the
(preliminary) viscosity data generated in our lab-that kt , kp , and f depend on the current values of

T , mn , l0 , V1 , etc., and not on the initial conditions oratory, and two coefficients, d1 and d2 , relating
kH to T using a linear variation, were so obtained.as in the models of Chiu et al.3 and Achilias and

Kiparissides.4,5 This is why the model of Seth and The values of d1 and d2 are given in Appendix B.
It must be emphasized that more experimentalGupta12 can be applied easily to nonisothermal

and semibatch operations of reactors. The values data on the viscosity of (nonreacting) PMMA–
MMA solutions at several additional tempera-of several properties and parameters required to

integrate the equations in Appendix A are given tures and concentrations must be taken before the
values of d1 and d2 (given in Appendix B) can bein Appendix B (for bulk polymerization of MMA

using the AIBN initiator). The three parameters, used for experimental studies. However, since the
main objective of the present study was to exploreut (T ) , up (T ) , and uf (T ) , have been expressed12

in terms of second-order polynomials in 1/T as whether viscosity measurements can be success-
fully used for model-based, on-line inferential-shown in Appendix B. The equations in Appendix

A can be integrated (for a given set of initial condi- state estimation, the use of the order-of-magni-
tude estimates of d1 and d2 given in Appendix Btions12) using the NAG library program, D02EJF

(which uses Gear’s technique18) , to obtain histor- (based on the results taken over a restricted range
of experimental conditions) is appropriate.ies of monomer conversion and the number- and

weight-average chain lengths. The value of the
parameter, TOL, required in this code was 1007

Generation of ‘‘Experimental’’ Data(the results were insensitive to decreases in the
value of TOL). The values of the coefficients a1– To explore the idea of using measured values of

T (t ) and h(t ) for inferential-state estimation ofa3 , b1–b3 , and c1–c3 in the model were obtained
earlier12 by curve-fitting experimental data under bulk PMMA reactors, one needs to have experi-

mental viscosity data for a given T (t ) for a poly-isothermal conditions on bulk8 and solution9 poly-
merization at several temperatures. In the pres- merizing system. Since this is not yet available,

(pseudo) ‘‘experimental’’ data are generated usingent work, the parameters a1–a3 , b1–b3 , and c1–c3

were retuned using only the bulk polymerization the model itself, and some random noise is super-
posed on the ‘‘smooth’’ model-predictions to simu-data8 since these were of interest. These parame-

ters were found to be quite close to the values late actual experimental data. One of the optimal
temperature histories for bulk polymerization ofobtained by Seth and Gupta,12 and the new values

are given in Appendix B. MMA, as recently provided by Chakravarthy et
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1864 BHARGAVA RAM, GUPTA, AND SARAF

al.,16 is selected (desired value of mn Å 1800 and
of monomer conversion, xm Å 0.94, to be obtained
in the minimum reaction time) for this work. This
smooth temperature history, Tsm(t ) , is curve-fit-
ted using a 17th-order Chebyshev series (using
the NAG library program, E02ADF) so that it can
be provided as an input to the reactor-simulation
program. A white noise is superposed on Tsm(t ) ,
using a random number, [R (t ) ] , generator to give
what can be considered as the ‘‘experimental’’
temperature history, Texp(t ) :

Texp(ti ) Å Tsm(ti ) / [4R (ti ) 0 2] (4)

In eq. (4), R (t ) is a random number lying between
0 and 1, generated using the NAG subroutine
G05CCF. The term, 4R (ti ) 0 2, is used so as to
give the amplitude of the noise as 27C. The ‘‘exper-
imental’’ data points are generated using eq. (4)
with ti Å i (Dt ) , where Dt is taken as 0.5 min. Figure 2 Viscosity (solid curve) of the reaction mass
The viscosity of the reaction mass for bulk poly- as generated using the temperature ‘‘data’’ points of

Figure 1 with the model and best-fit values of the pa-merization of MMA has then been generated us-
rameters as given in Appendix B. ‘‘Experimental’’ vis-ing the initial value of the initiator concentration,
cosity data (points) obtained on randomization also[I ]0 , as 15.48 mol/m3 and using Texp(ti ) [with lin-
shown.ear interpolation used between consecutive points

of Texp(ti ) in D02EJF]. It is observed that the
model values of h(t ) so obtained are quite smooth hexp(ti ) Å [0.5 / R (ti ) ]h(ti ) ; ti Å i (Dt ) (5)
and we must, therefore, add on a noise again so
as to provide simulated ‘‘experimental’’ viscosity Use of eq. (5) leads to fluctuations in hexp ranging
data. The following equation is used for this pur- from 0.5h to 1.5h, a fairly large range as compared
pose: to the possible errors and fluctuations in real ex-

perimental viscosity data.
The ‘‘experimental’’ temperature and viscosity

data so generated (by simulation) are shown in
Figures 1 and 2. These data are used for studying
model-based inferential-state estimation. The fi-
nal values of xm and mn using T (t ) given by the
solid curve in Figure 1 are 0.9408 and 1748, re-
spectively (these differ slightly from the values
in Ref. 16 because our parameters are slightly
different).

Inferential-state Estimation

In a typical polymerization reactor in which on-
line optimizing control is implemented, one would
have available, at time t Å t1 , a set of experi-
mental values of temperature and viscosity,
Texp[ i (Dt ) ] and hexp[ i (Dt ) ] ; i Å 0, 1, 2, . . . ,
t1 / (Dt ) . A short time-horizon for curve fitting, t1

0 N1(Dt )° t° t1 , is selected and the experimen-
tal points lying (only) in this horizon are used toFigure 1 Continuous temperature history (solid
estimate the values of several of the parameterscurve) for [I ]0 Å 15.48 mol/m3 and randomized temper-

ature ‘‘data’’ points used in this study. in the model. Sequential quadratic programming
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Table II Initial Guesses and Bounds for Generating the Solution in the First Curve-fit Horizon and
Parameters Used in the SQP Code

Parameter Initial Guess Lower Bound Upper Bound

a1 1.2416 1 102 1.2346 1 102 1.2446 1 102

b1 8.0673 1 101 8.0071 1 101 8.1071 1 101

c1 2.0168 1 102 2.014 1 102 2.024 1 102

d1 0.3118 0.309 1 100 0.315 1 100

a2 1.0314 1 105 1.03018 1 105 1.0334 1 105

b2 7.5 1 104 7.4845 1 104 7.5168 1 104

c2 1.445 1 105 1.4524 1 105 1.4556 1 105

d2 9.93 1 1004 9.0 1 1004 1.0 1 1003

a3 2.2735 1 107 2.2669 1 107 2.27743 1 107

b3 1.765 1 107 2.75955 1 107 1.76999 1 107

c3 2.7 1 107 2.6979 1 107 2.7083 1 107

Parameters in SQP Code23

Parameter Value

tolob 1003

tolnl 1006

funcpr 10010

tolact 1008

(SQP)22,23 was used in this work to obtain best- code. The SQP procedure also requires initial
guesses and bounds for the parameters a1–d1 forfit values of four parameters, a1 , b1 , c1 , and d1

(referred to as a1–d1 ; while assuming all the re- each value of t1 . The initial guesses supplied for
the first iteration [t1 ÅN1(Dt ) ] are given in Tablemaining parameters to be the same as given in

Appendix B—these being called reference values II. For subsequent values of t1 , the optimal values
of the parameters in the previous iteration arehenceforth). The objective function used for the

optimization is used as the initial guess. The bounds on the pa-
rameters are also listed in Table II. The bounds
on a1–c1 were chosen such that variations of about

Min E
a1–d1

å ∑
t1/ (D t )

iÅt1/ (Dt )0N1

Fhexp(ti ) 0 hth (ti )
hth (ti ) G2

(6) a decade (at any given temperature) are permit-
ted in the values of ut , up , and uf (note that a1–c1

are independent of temperature). The bounds on
d1 are chosen so as to permit a fairly large varia-where hexp is the experimental value of the viscos-
tion in the viscosity of the reaction mass. Muchity, and hth , the value predicted by the model cor-
smaller bounds would normally be used in experi-responding to the values of a1–d1 used. To obtain
mental on-line control work.the model values of the several state variables

In addition to obtaining best-fit values of a1–[see eq. (2)] and hth for t1 0 N1(Dt ) ° t ° t1

d1 in any iteration of curve-fitting (parameter es-[as required in eq. (6)] , the initial conditions are
timation mode), we used the same reactor simula-taken to be the model values at t Å t1 0N1(Dt ) as
tion code to predict values of the state variablescomputed in the previous iteration (and stored).
and of hth(t) for ‘‘future’’ times, t1° t° t1 /N2(Dt)Also, a constant temperature is assumed for the
(prediction mode). These theoretical predictionsduration t1 0 N1(Dt ) ° t ° t1 , which is the aver-
could be compared with the ‘‘experimental’’ dataage of the ‘‘experimental’’ values of temperature
points of viscosity (in the prediction horizon) toduring this period. The NAG subroutine, E04UPF
determine how good is the (short-term) predictiveusing SQP, was used for obtaining the best-fit val-
capability of the model-based state estimationues of a1–d1 [which minimize the sum of square
technique described herein. A good model predic-error, E , in eq. (6)] . Table II gives the values of

the computational parameters used with this tion capability is necessary if one wishes to use
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1866 BHARGAVA RAM, GUPTA, AND SARAF

model predictive control. The computer code
starts from t Å 0 and uses the first N1 points (first
curve-fitting horizon) for curve fitting (followed
by prediction of N2 points in the future). This
completes the first iteration of curve fitting. The
experimental values of viscosity for 0 / N3(Dt )
° t° (N1 / N3)(Dt ) are then used for the second
iteration (second curve-fitting horizon). This con-
tinues until the end of polymerization. The values
of N3 can be selected so as to have some overlap
between the successive curve-fitting horizons.

A few checks were made on the computer code
to ensure that it is free of errors. When the optimi-
zation program was run using all the ‘‘experimen-
tal’’ points (with no fluctuations introduced) and
initial guesses were provided which differed from
the reference values (Appendix B) of a1–d1 , the
optimization code converged to the reference val-
ues. Some other checks were also conducted and

Figure 3 The curve-fitted viscosity (solid curve) forled to the conclusion that the code was reasonably
the reference case. ‘‘Experimental’’ viscosity data,free from errors. The CPU time taken for the opti-
shown by the points, are the same as in Figure 2.mization problem was about 30 s on a super-mini

HP 9000/735 mainframe computer.

zons are shown in Fig. 4 on the abscissa). It is
observed that there is a considerable amount ofRESULTS AND DISCUSSION
‘‘ringing’’ in the values of these parameters be-
tween the lower and upper bounds. It is demon-The optimization program was run on the ‘‘experi-
strated later in this article that this is because wemental’’ data of viscosity and temperature (Figs.
are trying to curve-fit only a small number (five)1 and 2), using the following parameters (called
of experimental data points in any one parameterreference values again):
estimation and that the ringing can be reduced
by lowering the bounds of the four parameters,N1 Å 5
as well as by increasing Dt . The corresponding

N2 Å 5 variations in ut (T ) , up (T ) , uf (T ) , and kH are
shown in Figure 5. The ringing in the values ofN3 Å 1
a1–d1 are reflected as similar sharp fluctuations

Dt Å 0.5 min (7) in the values of ut , up , uf , and kH . In addition,
there is a general change in these parameters as-
sociated with their temperature dependence.12Thus, five ‘‘data’’ points at a time are taken for

curve fitting, and the curve-fitting horizon shifts The monomer conversion, Mn and Mw , for the ref-
erence case are shown in Figures 6 and 7. It isby one ‘‘experimental’’ point at a time in this refer-

ence run (with four points common between con- observed that the model predictions agree quite
well with the ‘‘experimental’’ points correspond-secutive curve-fitting horizons). The prediction

horizon also consisted of five sampling intervals. ing to the temperature ‘‘data’’ of Figure 1 (it may
be noted that the viscosity ‘‘data’’ were generatedFigure 3 shows the piecewise fitted curve of

h(t ) along with the ‘‘experimental’’ data points. by introducing additional fluctuations to values
computed using the ‘‘data’’ of Figs. 6 and 7). TheThe solid curve in Figure 3 consists of segments

which extend for one Dt period (the nonoverlap- final values (at t Å 30 min) of xm and mn are found
to be 0.9307 and 1743, respectively, for the curve-ping domain between two consecutive curve-fit-

ting horizons). The fit of the viscosity ‘‘data’’ is fitted case, as compared to the values of 0.9408
and 1748 corresponding to the temperature his-seen to be quite good. Figure 4 shows the varia-

tions of the parameters a1–d1 from horizon to ho- tory shown by the solid (smooth) curve in Figure
1. The agreement is extremely good even thoughrizon (the end values of t of the curve-fitting hori-
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Figure 4 Variation of the parameters a1–d1 for the reference case, corresponding to
the curve-fit of Figure 3.

temperature fluctuations of {27C and viscosity the curve-fitting horizon. This is shown in Figure
8(b). Similar results are obtained for short-termvariations of {50% were randomly introduced.

The optimal parameters obtained in any curve- predictions of xm , mn , and mw . All these reference
results indicate that ‘‘experimental’’ data on T (t )fitting horizon are used with the temperatures in

the corresponding prediction-horizon (five further and h(t ) can, indeed, be used with a model to esti-
mate the state variables of the system, e.g., xm(t ) ,points, since N2 Å 5) to predict the viscosity. The

short-term prediction capabilities are shown in mn (t ) , and mw (t ) .
It may be added that long-term predictions us-Figure 8. It is clear from this figure that if the

curve-fitting horizon is far ahead of the gel effect, ing the present technique are also very good ex-
cept when only a few (e.g., five) points are usedthe short-term (N2 Å 5) predictions are quite

good. When the curve-fitting horizon lies just be- in curve-fitting [see Figs. 9(a) and 10(a)] . How-
ever, use of another set of five points leads to bet-fore the gel effect, the short-term future predic-

tions need not be excellent. The predictions, how- ter long-term predictions, as shown in Figures
9(b) and 10(b). This variation in the quality ofever, improve considerably when even a single

data point from the gel-effect region is included in the long-term prediction is a consequence of the

Figure 5 Variation of the parameters ut (T ) , up (T ) , uf (T ) , and kH (T ) corresponding
to the curve-fit of Figure 3 (reference case).
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of them individually could give variations of about
a decade in the values of ut , up , and uf . The CPU
time increased by about fourfold, to 111 s. We
observed that there was not much improvement
in the fit of the viscosity data. Also, the degree
of ringing in the 11 parameters did not decrease
much. Much larger oscillations were observed in
the plots of ut (T ) , up (T ) , and uf (T ) for this case,
possibly because of the adding-up of the effects
of each of the additional parameters. Use of 11
parameters is, thus, not recommended since it
provides no additional advantages over the use of
four parameters (reference case).

We also studied the effect of narrowing the
bounds on a1–d1 by about 50%. The final fit of the
viscosity data was about as good as that observed
for the reference run (Fig. 3). But the ringing of
the parameters a1–d1 was reduced, as shown in
Figure 11. Figure 12 shows the corresponding

Figure 6 Estimated values of the monomer conver- plots of ut , up , uf , and kH as functions of time. No
sion (solid curve) for the reference case along with the worsening was observed in the short-term predic-
‘‘experimental’’ data.

tion capabilities. The final values of xm , Mn , and
Mw were observed to be close to the reference val-
ues. The CPU time decreased to 10 s. It can, thus,ringing in the values of the parameters and does

not arise when a larger curve-fitting horizon is be inferred that narrowing the bounds for a1–d1

is desirable for experimental, on-line optimizingused. For on-line optimizing control purposes with
minimization of the reaction time as the objective control. A comparison of Figure 12 with Figure 5

shows that by reducing the bounds the randomfunction, we should use all the data up to time t1 ,
rather than five points, whenever fresh optimiza- fluctuations in the parameter values (which are

indeed artifacts of the optimization proceduretion is carried out.
Having established the applicability of the used) become significantly reduced but the sys-

technique described herein for inferential state-
variable estimation, we now study the effect of
varying several of the other parameters involved.
Instead of using the most recent optimal values
of a1–d1 as the initial guess values for any curve-
fitting horizon, we used the initial values given in
Table II for all the horizons. There was no percep-
tible change in the fit of the h(t ) data. Almost the
same degree of ringing of the parameter values
was observed. The CPU time was also about the
same (increased by about 1 s). These and other
results not included in this article for reasons of
brevity can be supplied on request.

In the reference run, we assumed a2 , a3 , b2 , b3 ,
c2 , c3 , and d2 to be constants (at the values given
in Table II) , and we obtained best-fit values of a1 ,
b1 , c1 , and d1 . We explored if there would be any
improvement if all the 11 parameters (a1–d2)
were used for curve-fitting the h(t ) ‘‘data.’’ The Figure 7 Estimated values of Mn and Mw (solid
bounds of the remaining seven parameters pro- curve) for the reference case. ‘‘Experimental’’ data on
vided to the SQP code, as well as the initial Mn and Mw obtained using the temperature ‘‘data’’ of
guesses, are also given in Table II. The bounds on Figure 1 with the best-fit values of the parameters (Ap-

pendix B) in the model shown by the points.a2 , a3 , b2 , b3 , and c2 , c3 were selected so that each
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Figure 8 Short-range predictions for four curve-fitting horizons (reference case).
Diamonds indicate the ‘‘data’’ on h used for curve-fitting, while pluses indicate the
‘‘data’’ in the prediction horizon. In (b), the solid curve uses the first five points (starting
from t Å 23.5 min) for curve fitting, while the dotted curve uses the five data points
starting from t Å 24 min.

tematic variations of these parameters, because curve-fitting horizon, from five to eight. The fit of
viscosity was observed to be as good as that shownof changes in temperature, are preserved. This

justifies the reduction in the bounds. In all the in Figure 3. The fluctuations in a1–d1 reduced
slightly as compared to the reference case, ascases studied, it was possible to estimate the state

of the system (monomer conversion and average shown in Figure 13. The final values of xm , Mn ,
and Mw were in the desired range, as in the refer-molecular weight) quite accurately and uniquely

from the ‘‘experimental’’ viscosity and tempera- ence case. The prediction capabilities were also
found to be about the same as for the referenceture data.

We next studied the effect of increasing the case. The CPU time came down, as expected, to
15 s.value of N1 , the number of points used in the

Figure 9 Long-range predictions for xm (reference case) for two curve-fitting horizons.
Notation same as in Figure 8.
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Figure 10 Long-range predictions for Mn and Mw (reference case) for two curve-
fitting horizons. Notation same as in Figure 8.

We then studied the effect of increasing the mentation, Dt has to be chosen keeping the crite-
ria for sampling-period selection in mind.time interval, Dt , between ‘‘data’’ points to 1 min

(reference value Å 0.5 min). The alternate ‘‘data’’ We then explored the reasons for getting ring-
ing in the values of the parameters. Isothermalpoints from the reference case (Figs. 1 and 2) were

used for this purpose. The results obtained (507C) ‘‘data’’ on h(t ) , without any fluctuations
introduced, were taken. This is shown in Figureshowed an equally good fit of the viscosity data

as that for the reference case. Figure 14 shows 15. The entire set of 66 points were curve-fitted
to yield single values of the four parameters a1–that the degree of ringing in a1–d1 , with Dt Å 1

min, is much less. The prediction capabilities and d1 as shown by curves A in Figure 16. The same
‘‘data’’ were curve-fitted using 35 data pointsthe final values of xm , Mn , and Mw were found to

be as good as for the reference case. The CPU time each, with four overlapping points (see Table III) .
Curves B in Figure 16 show sudden and signifi-was 10 s. It is, thus, observed that larger values

of Dt and narrower bounds on a1–d1 than used cant changes in the value of at least one parame-
ter, c1 . Cases C and D in Figure 16 show a signifi-for the reference case are to be used for on-line

control work. However, for experimental imple- cant amount of ringing as the number of curve-

Figure 11 Variations of a1–d1 for the case when their bounds (Table II) are narrowed
down by 50%.
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Figure 12 Variation of the parameters ut (T ) , up (T ) , uf (T ) , and kH (T ) corresponding
to the curve-fit of Figure 11.

fitting horizons is increased. The fit of viscosity is calculate the control action using an analytical
model-predictive control scheme. The followingequally good (as shown in Fig. 15 by the solid

curve) in all the cases. It is, thus, clear that ring- optimization problem needs to be solved:
ing is introduced by the use of only a few data
points of viscosity, at a time, and that it is not Min ∑

i

A1(xm ,i ,mp 0 xm ,i ,sp )2 / (mn ,i ,mp 0 mn ,i ,sp )2

caused by fluctuations in the data. The long-term
predictions (for N1 Å 5), again, could be excellent st: model equations and bounds
or poor, because of the ringing in the values of the

on manipulated variables (8)parameters.

In eq. (8), the subscript mp stands for the model
Model Predictive Control predicted and the subscript sp stands for set point

or target values. Index, i , represents the (future)The estimated values of the kinetic parameters,
ut , up , uf , and kH , at any time t , can be used to control horizon, and optimization is carried out

Figure 13 Variations of a1–d1 when N1 is increased from 5 to 8.
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Figure 14 Variations of a1–d1 when Dt is increased from 0.5 to 1 min.

over the manipulated variable, which is the tem- On-line Optimization
perature of the reaction mass in the present case.

The polymerization process is started using an off-A1 and A2 , in eq. (8), are weightage factors. This
line optimized temperature trajectory. However,technique allows prediction of the control action
usually, the trajectory can be followed only ap-even when large disturbances enter the process
proximately because of experimental limitationsor equipment failure occurs temporarily. If the
(or disturbances enter the process, or material ismonomer or initiator is added in between the poly-
added to or removed from the reactor, or equip-merization process, this can be treated as a distur-
ment failure occurs temporarily). All these call forbance which can be automatically feed-forwarded
modifications of the remainder of the temperatureand accounted for before it enters the process.
trajectory. This can be easily done on-line using
the present methodology. Experimental data up
to time t1 are used to calculate the model parame-
ters which are used to estimate the state of the
system. A fresh optimization is then carried out
starting with the state as estimated above. This
trajectory can then be followed until the end of
the polymerization or until a new trajectory is
found.

CONCLUSIONS

A model-based, inferential state-variable estima-
tion technique has been described which uses a
few of the most recent ‘‘data’’ points on tempera-
ture and the viscosity of the reaction mass (mov-
ing curve-fitting horizon) to predict xm , mn , and
mw . Short-term predictions in the moving predic-
tion-horizon are found to be quite good, except
when the curve-fitting horizon is very near to the
gel-effect region and does not include any dataFigure 15 ‘‘Experimental’’ viscosity data (points) un-
point in this region. Multiple curve-fitting fol-der isothermal (507C) conditions with [I ]0 Å 15.48 mol/
lowed by periodic determination of the optimalm3, in the absence of any randomization. Solid curve

is the curve-fitted one, with N1 Å 5 and N3 Å 1. temperature history in the remaining period of
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Figure 16 Variation of a1–d1 for the curve fitting of nonrandomized, isothermal
(507C) data shown in Figure 15. Values of N1 and N3 for the various cases are given
in Table III. Scales for cases A and C are indicated on the left, while those for cases B
and D are on the right-hand side.

polymerization could provide a satisfactory of monomer conversion and weight-average mo-
lecular weight.scheme for on-line optimizing control. It is possi-

ble to use experimental temperature and viscosity
data in conjunction with the model equations to

NOMENCLATUREuniquely estimate the state of the system in terms

a parameter in the Mark–Hou-
wink equationTable III Details of Parameters Used for

a1–a3 parameters in correlation of utFitting Isothermal Viscosity Data of Figure 15
b parameter in the Lyons–To-(Dt Å 5 min)

bolsky equation (m3 kg01)
Curve (Fig. 16) N1 N3 b1–b3 parameters in correlation of up

Cpolym concentration of polymer (kg
A 66 — m03)
B 35 31 c1–c3 parameters in correlation of uf
C 40 2 Dn dead polymer molecule hav-
D 05 1 ing n repeating units
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R universal gas constant (atm-d1 , d2 parameters in equation for kH

E objective function m3 mol01 K01)
Rli , Rlm, Rls rate of continuous addition ofEd , Ep , Et activation energies for initi-

ation, propagation, and (liquid) initiator, monomer,
and solvent to reactor (moltermination in absence of

gel or glass effects (kJ s01)
Rvm, Rvs rate of evaporation of mono-mol01 )

f initiator efficiency mer or solvent (mol s01)
S solventf0 initiator efficiency in the lim-

iting case of zero diffusional S• solvent radical
T temperature of reaction mix-resistance

I initiator (AIBN) ture at time t , K
t time (min)[I ]0 initial molar concentration of

initiator (mol m03) t1 time at which state estima-
tion is made (min)K parameter in the Mark–Hou-

wink equation (m3 kg01) V1 volume of liquid at time t (m3)
Vfm, Vfp , Vfs fractional free volumes ofkH Huggins’ constant, dimen-

sionless monomer, polymer, and sol-
vent in reaction mixturekd , kf , ki , kp , ks , rate constants for the reac-

ktc , ktd tions in Table I at any time specific critical hole free vol-VO *I , VO *m , VO *p , VO *s
umes of initiator, mono-t (s01 or m3 mol01 s01)

kt ktc / ktd mer, polymer, and solvent
(m3 kg01 )k0

d , k0
p ,0 , k0

t ,0 frequency factors for initia-
tion, propagation, and ter- x vector representing state var-

iablesmination in absence of the
gel and glass effects (s01 or xm monomer conversion (molar)

at time tm3 mol01 s01)
kt ,0 , kp ,0 , ki ,0 kt , kp , and ki in absence of gel

and glass effects (m3 mol01

s01) Greek Letters
M moles of monomer (MMA) in

liquid phase, mol g overlap factor
zm , zm1 net monomer added to the reactorMjp molecular weight of polymer

jumping unit (kg mol01) h viscosity of the reaction mass (Pa-s)
[h] intrinsic viscosity (m3 kg01)Mn number-average molecular

weight Å (MWm ) (l1 / m1) / hsol solvent (monomer) viscosity (Pa-s)
uf , up , ut adjustable parameters in the model for(l0 / m0) (kg mol01)

Mw weight-average molecular cage, glass, and gel effects, respectively
(m3 mol01 , s, s)weight Å (MWm ) (l2 / m2) /

(l1 / m1) (kg mol01) lk kth (k Å 0, 1, 2, . . .) moment of live (Pn )
polymer radicals å (`

nÅ1 nkPn (mol)(MWI ) , (MWm ) , molecular weights of pure ini-
(MWs ) tiator, monomer, and sol- mk kth (k Å 0, 1, 2, . . .) moment of dead (Dn )

polymer chains å (`
nÅ1 nkDn (mol)vent (kg mol01)

N1 number of points in the curve- mn number-average chain length at time t
å (l1 / m1) / (l0 / m0)fit horizon

N2 number of points in the pre- mw weight-average chain length at time t
å (l2 / m2) / (l1 / m1)diction horizon

N3 number of data points to be j13 , j23 , ratio of the molar volume of the monomer,
jI3 solvent, and initiator jumping units todeleted from the previous

curve-fit horizon the critical molar volume of the poly-
mer, respectivelyPn growing polymer radical hav-

ing n repeat units rm , rp , density of pure (liquid) monomer, poly-
rs mer or solvent at temperature T (atR primary radical; random

number time t ) (kg m03)
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fm , fp , volume fractions of monomer, polymer, or dm0

dt
Å (ksS / kfM )

l0

V1
/ Sktd /

1
2

ktcD l2
0

V1
(A.8)

fs solvent in liquid at time t
c, cref defined in eqs. (A.20) and (A.21) in Ap-

pendix A dm1

dt
Å (ksS / kfM )

l1

V1
/ kt

l0l1

V1
(A.9)

Subscripts/Superscripts
dm2

dt
Å (ksS / kfM )

l2

V1
/ kt

l0l2

V1
/ ktc

l2
1

V1
(A.10)exp experimental value

mp model-predicted value
Min minimize djm

dt
Å Rlm(t ) 0 Rvm(t ) (A.11)

0 initial value
sm smooth
sp set point value djm1

dt
Å Rlm(t ) (A.12)

th theoretical value

V1 Å
S (MWs )

rs
/ M (MWm )

rmAPPENDIX A: MODEL EQUATIONS FOR
MMA POLYMERIZATION IN SEMIBATCH
REACTORS12 (BULK AND SOLUTION

/ (jm 0 M ) (MWm)
rp

(A.13)POLYMERIZATION*)

dI
dt
Å 0kdI / Rli (t ) (A.1) fm Å

M (MWm) /rm

M (MWm)
rm

/ S (MWs )
rs

/ (jm 0 M ) (MWm )
rpdM

dt
Å 0 (kp / kf )

l0M
V1

0 ki
RM
V1 (A.14)

0 ksS
l0

V1
/ Rlm(t ) 0 Rvm(t ) (A.2)

fs Å
S (MWs ) /rs

M (MWm)
rm

/ S (MWs )
rs

/ (jm 0 M ) (MWm )
rp

dR
dt
Å 2 fkdI 0 ki

RM
V1

(A.3)

(A.15)dS
dt
Å Rls (t ) 0 Rvs (t ) (A.4)

fp Å 1 0 fm 0 fs (A.16)dl0

dt
Å ki

RM
V1

0 kt
l2

0

V1
(A.5)

1
f
Å 1

f0
F1 / uf (T )

M
V1

1
exp[jI3{0c / cref } ] Gdl1

dt
Å ki

RM
V1

/ kpM
l0

V1
0 kt

l0l1

V1
(A.17)

/ (ksS / kfM )
(l0 0 l1)

V1
(A.6)

1
kt
Å 1

kt ,0
/ ut (T )m2

n
l0

V1

1
exp[0c / cref ]

(A.18)

dl2

dt
Å ki

RM
V1

/ kpM
l0 / 2l1

V1
0 kt

l0l2

V1 1
kp
Å 1

kp ,0
/ up (T )

l0

V1

1
exp[j13{0c / cref } ]

(A.19)

/ (ksS / kfM )
(l0 0 l2)

V1
(A.7)

* No inert solvent (benzene) used in this work. Variables
c Å

gHrmfmVO *m
j13

/ rsfsVO *s
j23

/ rpfpVO *p J
rmfmVO *mVfm / rsfsVO *s Vfs / rpfpVO *p Vfp

(A.20)not defined in the Nomenclature are defined in Refs. 7 and
12.
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Parameters for the Cage, Gel and Glass Effects
cref Å

g

Vfp
(A.21)

VO *I Å 9.13 1 1004 m3/kg
j13 Å

VO *m(MWm )

VO *p Mjp

(A.22)
VO *m Å 8.22 1 1004m3/kg

VO *p Å 7.70 1 1004 m3/kgj23 Å
VO *s (MWs )

VO *p Mjp

(A.23)
Mjp Å 0.18781 kg/mol

g Å 1jI3 Å
VO *I (MWI )

VO *p Mjp

(A.24)
Vfm Å 0.149 / 2.9 1 1004 [T (K ) 0 273.1]

kd Å k0
d exp(0Ed /RT ) (A.25) Vfp Å 0.0194 / 1.3 1 1004 [T (K ) 0 273.1 0 105];

kp ,0 Å k0
p ,0exp(0Ep /RT ) (A.26) for Tõ (105 / 273.1)K

kt ,0 Å ktd,0 Å k0
td,0exp(0Etd /RT ) (A.27)

Mark–Houwink Constants for Intrinsic Viscosity
[See Eq. (29), Appendix A]h Å hsol F1 / Cpolym[h]expS kH[h]Cpolym

1 0 bCpolym
D

K Å 6.75 1 1006 m3/kg
/ C2

polym[h]2expS2kH[h]Cpolym

1 0 bCpolym
DG (A.28) a Å 0.72

K and a assumed to be (almost ) independentCpolym Å rpfp (A.29)
of T .

[h] Å KMa
w (A.30)

Parameters for the Adapted Lyons–Tobolsky
APPENDIX B: PARAMETERS USED FOR Equation [Eq. (28), Appendix A]
BULK POLYMERIZATION OF MMA WITH
AIBN12

kH Å 0d1 / d2T
rm Å 966.5 0 1.1(T 0 273.1) kg/m3

d1 Å 0.3118; d2 Å 9.93 1 1004 K01 (this work)
rp Å 1200 kg/m3

b Å 03.5 1 1003 m3/kg (assumed independent
f0 Å 0.58 of T )

k0
d Å 1.053 1 1015 s01

hsol Å exp(00.099 / 496/T ) /T1.5939 Pa-s (Ref. 5)
k0

p ,0 Å 4.917 1 102 m3/mol-s

k0
td,0 Å 9.8 1 104 m3/mol-s Correlations Used for Curve-Fitting

ktc Å 0.0
log10[ut (T ) , s] Å a1 0 a2(1/T ) / a3(1/T2)kf Å 0.0
log10[up (T ) , s] Å b1 0 b2(1/T ) / b3(1/T2)ki Å kp

log10[103uf (T ) , m3 mol01]ks Å 0.0

Å c1 0 c2(1/T ) / c3(1/T2)Ed Å 128.45 kJ/mol

a1 Å 1.2408 1 102; a2 Å 1.0314 1 105;Ep Å 18.22 kJ/mol

a3 Å 2.2735 1 107Etd Å 2.937 kJ/mol

b1 Å 8.0593 1 101; b2 Å 7.5 1 104;(MWm) Å 0.10013 kg/mol

(MWI ) Å 0.06800 kg/mol b3 Å 1.765 1 107
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